Synthesis and Characterization of Ti-6Al-6Mo Prepared by Arc Melting Process

ثبت نشده
چکیده

The Ti-6Al-6Mo alloy was arc-melted eight times from pure Ti, Al, and Mo. The Ti6Al-6Mo were analyzed by using an optical microscope, SEM-EDS, XRD and Vickers Hardness Tester. Corrosion test was performed by using Hank’s solution at 37 °C and pH 7.4. The optical micrograph showed a similar structure of this alloy. The microstructure of Ti 6Al6Mo was basketweave with  lath. The map of Ti, Al and Mo showed a similar distribution of this alloy. The XRD analysis showed that the α and β phase occurred. The Vickers hardness value of Ti6Al6Nb was 398.7 HV, higher than pure Ti. The corrosion rate of as cast Ti-6Al6Mo was 0.0016 mmpy (mm/year). The result showed that this alloy can potentially be used for biomedical application.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microstructure and mechanical properties of open-cellular biomaterials prototypes for total knee replacement implants fabricated by electron beam melting.

Total knee replacement implants consisting of a Co-29Cr-6Mo alloy femoral component and a Ti-6Al-4V tibial component are the basis for the additive manufacturing of novel solid, mesh, and foam monoliths using electron beam melting (EBM). Ti-6Al-4V solid prototype microstructures were primarily α-phase acicular platelets while the mesh and foam structures were characterized by α(')-martensite wi...

متن کامل

Next Generation Orthopaedic Implants by Additive Manufacturing Using Electron Beam Melting

This paper presents some examples of knee and hip implant components containing porous structures and fabricated in monolithic forms utilizing electron beam melting (EBM). In addition, utilizing stiffness or relative stiffness versus relative density design plots for open-cellular structures (mesh and foam components) of Ti-6Al-4V and Co-29Cr-6Mo alloy fabricated by EBM, it is demonstrated that...

متن کامل

Investigation of the mechanical properties and microstructure of the Ti-6Al-4V to Al2024 joint fabricated by successive- stage transient liquid phase (S-TLP) method

The aim of this study is investigation of TLP variables on microstructure and mechanical properties of Al2024 to Ti-6Al-4V bonding for TLP joint. For this purpose, the sheets were prepared with dimension of 130×32×3 mm from Ti-6Al-4V and Al2024 alloys and 50µm thick Sn-5.3Ag-4.2Bi foil as interlayer. Sn-5.3Ag-4.2Bi foil prepared with dimension of 32×25 mm. Two alloys was joint together by proce...

متن کامل

Investigation of the mechanical properties and microstructure of the Ti-6Al-4V to Al2024 joint fabricated by successive- stage transient liquid phase (S-TLP) method

The aim of this study is investigation of TLP variables on microstructure and mechanical properties of Al2024 to Ti-6Al-4V bonding for TLP joint. For this purpose, the sheets were prepared with dimension of 130×32×3 mm from Ti-6Al-4V and Al2024 alloys and 50µm thick Sn-5.3Ag-4.2Bi foil as interlayer. Sn-5.3Ag-4.2Bi foil prepared with dimension of 32×25 mm. Two alloys was joint together by proce...

متن کامل

Selective Laser Melting Produced Ti-6Al-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties

Current post-process heat treatments applied to selective laser melting produced Ti-6Al-4V do not achieve the same microstructure and therefore superior tensile behaviour of thermomechanical processed wrought Ti-6Al-4V. Due to the growing demand for selective laser melting produced parts in industry, research and development towards improved mechanical properties is ongoing. This study is aimed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017